حاصل جمع مستقیم مدول های بائر

پایان نامه
چکیده

فرض کنیم r حلقه ای یکدار و شرکت پذیر، m یک r –مدول راست یکانی و (s=end(m حلقه ی r- درون ریختی ها روی m باشد. حلقه ی r را بائر (بئر ) گوییم هرگاه پوچ ساز راست هر زیر مجموعه ی r، جمعوند مستقیمی ازr باشد. در این پایان نامه مفهوم بائر( بئر) و خواص مربوط به آن را برای یک مدول دلخواه بیان می کنیم. مدول mبائر است اگر به ازای هر ایدال چپ i از حلقه ی s، r_m (i)?^?m . نشان می دهیم خاصیت بائر توسط جمعوندهای مستقیم به ارث برده می شود. هم چنین ارتباط بین مدول های توسیعی و مدول های بائر را مورد بررسی قرار داده و نشان می دهیم m بائر و k- هم نامنفرد است اگر و تنها اگر توسیعی و k- نامنفرد باشد. علاوه بر این، حاصل جمع مستقیم مدول های بائر را مورد تجزیه و تحلیل قرار می دهیم . ثابت می کنیم حلقه یr موروثی و نیم ابتدایی است اگر تنها اگر هر r- مدول آزاد، بائر باشد. نشان داده می شود برای مدول بائر و تورونده ی m، حاصل جمع مستقیم متناهی از کپی های m بائر است اگر و تنها اگر (s=end(m، نیم موروثی چپ و ?- چسبیده ی راست باشد.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

توصیف های جدید از مدول های سیگما-تزریقی بر اساس حاصل جمع های مستقیم از مدول های تزریقی و تصویری

r-مدول m، سیگما-تزریقی نامیده می شود هرگاه m^((?))با هر عدد اصلی ? تزریقی باشد. در این پایان نامه مدول های سیگما-تزریقی معرفی شده و توصیف های جدیدی برای آن ها ارائه می شود. به عنوان یک قضیه نشان داده می شود که یک مدول تزریقی m، سیگما-تزریقی است اکر وتنها اگر عدد اصلی نامتناهی ? وجود داشته باشد به طوری که هر توسیع اساسی از m^((?)) حاصل جمع مستقیمی از مدول های تزریقی باشد. در ادامه به توسیع این ق...

15 صفحه اول

حلقه های کوته و حلقه هایی که مدول ها روی آن ها جمع مستقیم مدول های توسیعی است

فرض کنیم ‎r‎ یک حلقه ی شرکت پذیر یکدار باشد. ‎r‎ را کوته ی چپ ‎(راست)‎ گوییم، هرگاه هر ‎-r‎مدول چپ ‎(راست)‎ جمع مستقیم مدول های دوری باشد. همچنین ‎r‎ را کوته گوییم، هرگاه هم کوته ی چپ و هم کوته ی راست باشد. در این پایان نامه ابتدا به بررسی حلقه های کوته ی چپ و حلقه های کوته در حالت تعویض ناپذیر و در حالتی که تمام خودتوان های ‎r‎ مرکزی باشند، پرداخته ایم. ثابت می کنیم که با شرط بالا اگر ‎r‎ حلقه...

بررسی جمع و جمع مستقیم دنباله های قاب

در این پایان نامه ابتدا تعاریفی از قاب و جمع مستقیم در فضاهای هیلبرت را ارائه داده و سپس دنباله ‏‏ی قاب با مجموعه اندیس شمارش پذیر در فضای هیلبرت را تعریف می‏کنیم [2,15]و درادامه شرایط لازم و کافی برای اینکه جمع دو دنباله بسل با عملگرهای مربوط به آن در فضای هیلبرت قاب باشد را در[3,2] بیان می‏کنیم.همچنین خواصی از جمع وجمع مستقیم دنباله‏های قاب در[12,6] بیان کرده که در این راستا شرایط لازم و کافی...

15 صفحه اول

مجموع مستقیم مدول های ریکارت

مفهوم مدولهای ریکارت بهتازگی تعریف شده است. نشان داده شده است که مجموع مستقیم مدولهای ریکارت در حالت کلی یک مدول ریکارت نیست. حال در این پایاننامه به بررسی این سوال میپردازیم که، چه موقع مجموع مستقیم مدولهای ریکارت یک مدول ریکارت است؟ نشان میدهیم اگر برای هر ??<?? ???={0 , 2 ,…,?? } ، مدول ???? ، ???? - انژکتیو باشد، آنگاه ???=0 ?? ???? یک مدول ریکارت است اگر و تنها اگر برای هر ??,?? ??? ،...

بررسی حلقه های بائر و p_q بائر

در این رساله ابتدا به تعریف حلقه های بائر ، شبه بائر و p-q بائر می پردازیم و سپس با بیان تعاریفی از قبیل حلقه ی کاهشی و حلقه ی آلفا صلب و آلفا سازگار به ایجاد شرایطی می پردازیم که بتوانیم ویژگی های فوق را بر روی توسیع هایی ار این حلقه ها مانند سری های توانی لوران و سری های توانی هیلبرت و سری توانی اریب لوران و ... نیز اعمال کنیم و به عنوان نمونه ثابت کنیم که سه گزاره ی زیر معادلند: 1. حلقه ی س...

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده ریاضی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023